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Residual Monte Carlo High-Order Solver for

Moment-Based Accelerated Thermal Radiative Transfer

Equations

Jeffrey Willerta, H. Parka

aTheoretical Division, MS B216, Los Alamos National Laboratory, Los Alamos, NM
87545

Abstract

In this article we explore the possibility of replacing standard Monte Carlo
(SMC) transport sweeps within a Moment-Based Accelerated Thermal Ra-
diative Transfer (TRT) algorithm with a Residual Monte Carlo (RMC) for-
mulation. Previous Moment-Based Accelerated TRT implementations have
encountered trouble when stochastic noise from SMC transport sweeps ac-
cumulates over several iterations and pollutes the low-order system. With
RMC we hope to significantly lower the build-up of statistical error at a
much lower cost. First, we display encouraging results for a zero-dimensional
test problem. Then, we demonstrate that we can achieve a lower degree of
error in two one-dimensional test problems by employing a RMC transport
sweep with multiple orders of magnitude fewer particles per sweep. We find
that by reformulating the high-order problem, we can compute more accurate
solutions at a fraction of the cost.

Keywords: Thermal Radiative Transfer, Moment-Based Acceleration,
Monte Carlo, Residual Monte Carlo

1. Introduction

Recent work has demonstrated the impressive efficiency with which moment-
based acceleration (or High-Order/Low-Order (HO-LO)) techniques can be
used to accelerate the solution to the thermal radiative transfer (TRT) equa-
tions [1, 2, 3]. Furthermore, recent studies have considered a hybrid method
which uses Monte Carlo algorithms to solve the transport equation in the
context of moment-based acceleration [1, 4, 5, 6]. These hybrid methods in
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which high-order (HO) Monte Carlo solutions are accelerated using a low-
order (LO) Moment-Based system have been successful, however not without
some struggle. While Monte Carlo methods can provide an exact treatment
of complex geometries, are void of discretization error and are highly paral-
lelizable, these solutions can contain a significant amount of statistical error
which has the potential to corrupt the LO solver.

We are interested in solving the gray TRT equation

1

c

∂I

∂t
+ Ω̂ · ∇I + σI =

σacT 4

4π
, (1)

in which I = I(~r, Ω̂, t), the radiation angular intensity, is a function of space,
angle and time, σ = σ(~r, T ), the opacity, is a function of space and tem-
perature, and T = T (~r, t), the temperature, is a function of space and time.
Additionally, a is the radiation constant and c is the speed of light. Equation
1 is coupled to the nonlinear temperature ODE,

ρcv
∂T

∂t
−
∫
4π

dΩ̂

(
σI − σacT 4

4π

)
= 0, (2)

in which ρ and cv are the density and specific heat of the material, respec-
tively. We refer to the combination of Equations 1 and 2 as the HO system.
We apply a backward-Euler time-discretization to the HO system,

In+1 − In

c∆t
+ Ω̂ · ∇In+1 + σn+1In+1 =

σn+1ac(T n+1)4

4π
,(3)

ρcv
T n+1 − T n

∆t
−
∫
4π

σn+1

(
In+1 − ac(T n+1)4

4π

)
dΩ̂ = 0. (4)

This system can be solved using source iteration [1, 2] in which In+1 and
T n+1 are iterated in Equations 3 and 4 until a consistent solution is found.
This iteration may converge exceptionally slowly and makes source iteration
an impractical choice of solvers when there exists strong absorption-emission
physics. Instead, we opt for a moment-based acceleration technique. First we
define E and ~F , the radiation energy density and radiative flux, respectively,
as the 0th and 1st angular moments of the radiation angular intensity,

E =
1

c

∫
4π

dΩ̂I (5)

~F =

∫
4π

dΩ̂Ω̂I. (6)

2



Now, we define the 0th and 1st angular moments of Equation 1,

∂E

∂t
+∇ · ~F + cσE = σacT 4, (7)

1

c

∂ ~F

∂t
+∇ · EcE + σ ~F = 0, (8)

in which we define the Eddington tensor, E ,

E =

∫
4π
dΩ̂Ω̂Ω̂I∫
4π
dΩ̂I

. (9)

We refer to Equations 7 and 8 as the LO system.
As in [7], we replace E with the P1 approximation and a consistency term,

γ, to enforce HO-LO consistency,

1

c

∂ ~F

∂t
+
c

3
∇E + σ ~F = γcE. (10)

Lastly, we can rewrite the temperature equation in terms of E,

ρcv
∂T

∂t
−
(
σcE − σacT 4

)
= 0. (11)

The LO system, Equations 7, 10, and 11, can be solved efficiently using
modern nonlinear solvers [12, 13]. The solution of the LO system provides
an explicit expression for the emission source in Equation 3 and thus there is
no need for iteration within the HO system. As a result, this HO-LO method
accelerates the solution to the original TRT system.

Now, we can define a predictor-corrector algorithm [2] which allows us to
solve the TRT system at each time-step, Algorithm 1.

Using Algorithm 1, we only need to execute a single HO solve at each
time-step. A HO solve is defined to be the operation applied by inverting
the left-hand-side operator of Equation 3 (transport operator). This opera-
tion is generally considered to be a major computational cost. This HO-LO
algorithm allows a single HO solve per time-step by using the LO system to
provide a consistent T 4 (emission) source. This is a major advantage over
source iteration, in which the number of HO solves per time-step can be ex-
cessive, and is a more accurate option than those algorithms which utilize
a linearization of the source term. HO solves are often referred to as trans-
port sweeps when the high-order solver is deterministic in nature. We adopt
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this convention when stochastic solvers are used as well, referring to them as
Monte Carlo transport sweeps.

The authors of [1] demonstrated that Equation 12 can be solved using
a Monte Carlo (MC) transport sweep so long as an adequate number of
particles is used. We assume that the HO transport sweep “inverts” the
transport operator accurately, however this is not necessarily the case when
an MC HO solver is used. Within the HO-LO context, the MC solver must
obtain an accurate global solution which is generally inefficient. When too
few particles are used, undersampling and statistical noise can corrupt the
consistency term, γn+1, so much that the LO solver may fail to converge.
Unfortunately, in these calculations we do not always have the luxury of
increasing the particle count per transport sweep to a level which will achieve
a suitably-low level of noise.

Instead of attempting to increase the number of particles per sweep or
replacing the noisy solution with an asymptotic approximation in some re-
gions of the domain [1], we seek to replace the standard Monte Carlo (SMC)
solver with a highly accurate Residual Monte Carlo (RMC) approach.

2. Residual Monte Carlo

For one reason or another, we often know the exact solution in some region
of the domain or can approximate the solution using a diffusion model or the
previous time-step. In this case, asking an SMC simulation to resolve In+1

is an inefficient use of computational resources. Suppose we have a good
approximation, I+, to In+1, in which

|δn+1| = |In+1 − I+| � |In+1|. (13)

In this case, if we write a residual equation for δn+1,

δn+1

c∆t
+ Ω̂ · ∇δn+1 + σn+1δn+1 =

σn+1ac(T n+1)4

4π
+

In

c∆t
− . . .(

I+

c∆t
+ Ω̂ · ∇I+ + σn+1I+

)
, (14)

then the source term (right-hand-side of Equation 14), is smaller than the
source term of the original formulation (Equation 3). The error in the simu-
lation is directly proportional to the magnitude of the source term, so intu-
itively the statistical noise incurred in computing δn+1 is smaller than if we
had attempted to compute In+1 directly.

4



This simple idea opens up the possibility of using a much smaller number
of particles for each HO solve in order to achieve more accurate solutions.
Furthermore, RMC allows one to distribute MC particles more efficiently
within the HO-LO context. However, implementation of the RMC HO solve
can be a non-trivial endeavor. Adapting existing SMC codes may be difficult
for several reasons. First of all, the code must be willing to accept a negative
source when the residual source term loses positivity. Furthermore, as we
will demonstrate in later sections, it will be required to build source terms
at interior cell-faces. However, as we will see, these adaptations may be well
worth the extra effort.

The rest of the paper will follow the same order in which we developed the
one-dimensional gray RMC HO solver. We begin by considering an isotropic
0-D problem which is started out of equilibrium and relaxes to an equilibrium
solution. At each time-step we can compute an exact solution to Equation 3
for comparison purposes. Then we consider a 0-D problem with an initially
anisotropic angular intensity and watch it relax to an isotropic equilibrium.
Finally, we walk through the process which led us to the final one-dimensional
gray RMC HO solver.

This work is definitely not the first to consider using RMC to solve kinetic
systems, however our HO-LO algorithm allows for a much easier implementa-
tion in which the Monte Carlo algorithm solves a purely absorbing problem
- the re-emission term is handled completely by the LO system. Further-
more, our algorithm requires only a single HO solve per time-step. In [10],
the authors demonstrate the use of an exponentially-convergent Monte Carlo
algorithm for solving the neutron transport equation which takes advantage
of the residual formulation. Their work hinges on the ability to refine the
spatial and/or angular mesh throughout the iteration, which they refer to
as “mesh adaptation.” For our problem, however, mesh adaptation is not a
feasible option.

The authors of [8] and [9] solve the TRT equations using a RMC formu-
lation, though in a different form. In these papers the authors define their
difference formulation by suggesting that

In+1(x, µ) ≈ ac(T n+1(x))4

2

and define

δn+1(x, µ) = In+1(x, µ)− ac(T n+1(x))4

2
.
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Furthermore, the authors demonstrate that when using a piecewise constant
approximation of the radiation angular intensity, their mesh must be refined
so that each cell is on the order of a single mean-free-path [9]. In Section 4
we demonstrate that we can choose a better approximation to the new time
intensity and we show that our piecewise constant approximation can yield
the same results as an SMC simulation using vastly fewer particles.

3. 0-D Test Problem

We will look at two 0-D test problems. For the first problem we will
assume an isotropic angular intensity throughout the simulation. In the
second problem, we’ll consider an anisotropic initial condition. In this section
we will solve the 0-D high-order system, given by

In+1 − In

c∆t
+ σIn+1 = σac(T n+1)4 (15)

ρcv
T n+1 − T n

c∆t
−
∫ 1

−1

(
σIn+1 − σac(T n+1)4

)
dµ = 0. (16)

For all 0-D test problems we utilize standard track-length tallies whenever a
MC simulation is applied as the HO solver. In Section 4.4 we will discuss a
better method of tallying, however their use in 0-D would hide the effects of
the RMC simulation.

3.1. Isotropic Angular Intensity

For this problem, we will demonstrate the effectiveness of RMC using the
source iteration algorithm,

In+1,k+1 − In

c∆t
+ σIn+1,k+1 = σac(T n+1,k)4(17)

ρcv
T n+1,k+1 − T n

c∆t
−
(
σIn+1,k+1 − σac(T n+1,k+1)4

)
= 0. (18)

We iterate until ‖T n+1,k+1 − T n+1,k‖ < 10−12 at each time-step. We avoid
use of the HO-LO algorithm in this test problem, as the LO system would
give the isotropic angular intensity exactly. The SMC simulation will solve

In+1,k+1

c∆t
+ σIn+1,k+1 = σac(T n+1,k)4 +

In

c∆t
. (19)
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For RMC we will make the approximation that In+1,k = In + δn+1,k. In this
case, the residual equation becomes

δn+1,k+1

c∆t
+ σδn+1,k+1 = σac(T n+1,k)4 − σIn. (20)

For both SMC and RMC we will utilize a total of 104 particles per HO
solve in our computational tests. These solutions will be compared to a
deterministic solution of Equation 19 which is exact in the sense that there is
no spatial or angular discretization error. We use an initial angular radiation
intensity I0 = ac(5004) and an initial temperature T 0 = 50 eV . We choose
cv = 1012 erg/eV − g, a material density ρ = 0.1 g/cm3, and a constant
opacity σ = 1000 cm−1. We ran the simulation for 1000 time-steps with
∆t = 5 × 10−16 s. The deterministic source iteration algorithm requires
roughly 2.68 transport sweeps per timestep. The number of SMC transport
sweeps per timestep can vary due to MC noise. Using the more accurate
RMC transport sweeps, the number of sweeps per timestep is comparable to
the deterministic method.

In Figure 1 we plot the relative error in the angular intensity at each
time-step. In Figure 2, we plot the relative error in the temperature at each
time-step. Clearly, the equilibrium radiation intensity computed via SMC is
about 10% off of the true equilibrium, whereas the error is only about .1% off
using RMC. These errors are caused by a buildup of minor errors throughout
the simulation. In each case, we see that the relative error of RMC is over
two orders of magnitude lower when using RMC. It is clear from these two
plots that the RMC sweep can provide a significant reduction in error over
MC even for a very simple problem without spatial or angular dependence.

3.2. Anisotropic Angular Intensity

In this section we will consider solving the 0-D thermal radiative transfer
equations when the angular intensity is initially anisotropically distributed.
In this case, we will utilize the 0th angular moment of Equation 15 in order
to bypass the source iteration and accelerate the computation. Now, at each
time-step we solve the following LO system,

En+1 − En

∆t
+ cσEn+1 = σac(T n+1)4, (21)

ρcv
T n+1 − T n

c∆t
−
(
σcEn+1 − σac(T n+1)4

)
= 0, (22)
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Figure 1: Error in the angular intensity at each time-step.

for En+1 and T n+1. In this case, T n+1 is the correct temperature to use in
Equation 15. Therefore, we obtain the correct solution with a single HO
solve per time-step. We use the same test problem as before except for the
anisotropy of the angular intensity. We use 16 angular bins and the initial
intensity is given by

I0(µ) = µ2ac(5004). (23)

As before, we can compute δn+1 using

δn+1

c∆t
+ σδn+1 = σac(T n+1)4 − σIn. (24)
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Figure 2: Error in the material temperature at each time-step.

However, it should be clear that δn+1 does contain some amount of stochastic
noise and does not satisfy Equation 24 exactly as standard track-length tallies
do not conserve energy. In 1-D (and beyond), the use of continuous energy
deposition (CED) tallies is warranted [1, 4, 5, 6, 11]. These tallies satisfy
that 0th moment balance equation and are generally less noisy than the other
conservative analog tallies.

4. 1-D Residual Monte Carlo

In this section we solve the 1-D TRT system

In+1 − In

c∆t
+ µ

∂In+1

∂x
+ σIn+1 = σ

ac(T n+1)4

2
(25)
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Figure 3: Error in the radiation temperature at each time-step.

ρcv
T n+1 − T n

c∆t
−
∫ 1

−1

(
σIn+1 − σac(T

n+1)4

2

)
dµ = 0. (26)

Now we will use Algorithm 1 to advance the simulation in time. In the
previous section we were able to easily implement the RMC method and
achieve a consistent and correct solution. In 1-D, however, much more care
must be taken when deriving the RMC algorithm.

Consider a similar approach to the 0-D case and let In+1 = I+ + δn+1,
which yields

δn+1

c∆t
+ µ

∂δn+1

∂x
+ σδn+1 = σ

ac(T n+1)4

2
− I+ − In

c∆t
− µ∂I

+

∂x
− σI+.(27)

In the continuum, Equation 27 is correct and will produce the correct resid-
ual solution. However, once the equation has been spatially discretized, we
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Figure 4: Error in the material temperature at each time-step.

must be careful with the treatment of the µ∂I
n

∂x
term on the right-hand-side.

When we represent the radiation angular intensity using a constant source
in each space-angle cell, we find that both the angular intensity and its spa-
tial derivative are discontinuous. In the remainder of this section we will
demonstrate how to evaluate the residual term for an appropriate choice of
I+.

4.1. Discrete Residual Formulation

In this section we consider a residual formulation where δn+1

= In+1 − I+, in which I+ is any approximation to In+1. Again, our residual
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equation is now given by

δn+1

c∆t
+ µ

∂δn+1

∂x
+ σn+1δn+1 =

σn+1ac

2
(T n+1)4 − I+ − In

c∆t
. . .

− µ∂I
+

∂x
− σn+1I+. (28)

This formulation allows us to consider volumetric sources and boundary
sources separately. We can define two source functions

V =
σn+1ac

2
(T n+1)4 − I+ − In

c∆t
− σn+1I+, (29)

B = −µ∂I
+

∂x
, (30)

and treat them independently.
The volumetric source, V , is treated in the standard way. The boundary

source, B, yields a delta-function source at each interior and exterior cell
boundary. The strength of the face source is based upon the difference in
intensities in the two adjacent cells. At a cell face xi+ 1

2
, the source is given

by

Bi+ 1
2

= sign(µ)
∣∣I+i+1 − I+i

∣∣ . (31)

4.2. Justification for Discrete Residual Formulation

Consider the solution of the transport equation for a single time-step, in a
single cell in which the old-time solution, I0(µ), is constant in space. Without
loss of generality, assume µ > 0 and choose the left cell boundaries xL = 0.
Furthermore, define an incoming source at the left boundary, IL = C, and a
new-time temperature, T 1, which is also constant throughout the cell.

Then the new time solution of Equation 3 is given by

I1(x, µ) = Ce−
σ̃1x
µ +

(
σ1ac(T 1)4

2
+
I0(µ)

c∆t

)
(1− e−

σ̃1x
µ )

σ̃1
, (32)

in which

σ̃1 = σ1 +
1

c∆t
.

Now, consider the solution of

δ1v
c∆t

+ µ
∂δ1v
∂x

+ σ1δ1v =
σ1ac(T 1)4

2
− σ1I0(µ). (33)
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with zero boundary conditions. We find

δ1v(x, µ) =

(
σ1ac(T 1)4

2
− σ1I0(µ)

)
(1− e−

σ̃1x
µ )

σ̃1

=

(
σ1ac(T 1)4

2
− σ1I0(µ)− 1

c∆t
I0(µ) +

1

c∆t
I0(µ)

)
(1− e−

σ̃1x
µ )

σ̃1

=

(
σ1ac(T 1)4

2
− σ̃1I0(µ) +

1

c∆t
I0(µ)

)
(1− e−

σ̃1x
µ )

σ̃1

=

(
σ1ac(T 1)4

2
+

1

c∆t
I0(µ)

)
(1− e−

σ̃1x
µ )

σ̃1
− I0(µ) + I0(µ)e−

σ̃1x
µ .

Furthermore, let us solve

δ1b
c∆t

+ µ
∂δ1b
∂x

+ σ1δ1b = 0 (34)

in which δ1b (0, µ) = C − I0(µ). Here, we find,

δ1b (x, µ) =
(
C − I0(µ)

)
e−

σ̃1x
µ (35)

and therefore,

I0 + δ1v + δ1b = Ce−
σ̃1x
µ +

(
σ1ac(T 1)4

2
+

1

c∆t
I0(µ)

)
(1− e−

σ̃1x
µ )

σ̃1
. (36)

So the residual formulation recovers the analytic solution when incorporating
cell-surface delta-function sources.

4.3. Choosing I+

As one may surmise, the choice of I+ is very important when trying to
develop an efficient residual Monte Carlo algorithm. Equation 28 is correct
for any choice of I+, however the goal is to minimize the strength of the
source, or analogously, minimize the difference between In+1 and I+. It is
tempting to use the old time intensity, In, as an approximation to In+1. In
many instances we found that this yielded positive cell face sources and neg-
ative cell volumetric sources. While mathematically correct, we found that
Monte Carlo integration of these sources was very challenging when σ was
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large. Furthermore, we found that both the volumetric and the face sources
could be quite large in magnitude when the solution is sharply varying.

These facts lead us towards a new approach. In order to avoid needing
to cancel positive and negative weights within each cell, we found that we
could zero out the volumetric source via the appropriate choice of I+. That
is, we solve V = 0,

σn+1ac

2
(T n+1)4 − I+ − In

c∆t
− σn+1I+ = 0 (37)

σn+1ac

2
(T n+1)4 +

In

c∆t
=

I+

c∆t
+ σn+1I+ (38)(

1

c∆t
+ σn+1

)−1(
σn+1ac

2
(T n+1)4 +

In

c∆t

)
= I+ (39)

Given this choice of I+, no volumetric sources are required. The corrections
to I+ are taken care of entirely by the face sources. The benefit of this
increases as the Monte Carlo simulation of face sources is generally more
accurate - the stochastic variability of initial particle locations only exists for
volumetric sources.

4.4. Implementation

Our residual Monte Carlo simulation behaves almost identically to a tra-
ditional standard Monte Carlo implementation, however has an additional
function which computes the approximation I+. As one can see from Equa-
tion 39, the computation of I+ is inexpensive and can be done in parallel
– I+ in each space-angle cell is completely independent of each neighboring
space-angle cell. Once I+ has been computed, the simulation is ready to
begin and particles are instantiated at each cell face with nonzero residual.

One easily overlooked feature of this algorithm is that there is no error in
some regions of the solution in which the spatial gradient is zero using RMC.
This can be seen in Figures 5 - 14. In each of these figures, the RMC solution
past the radiation front remains perfectly in equilibrium.

This previous point also illuminates another way in which RMC can be
dramatically more efficient than SMC. With SMC, we need to supply enough
particles to each cell of the domain so that the radiation angular intensity
and cell-face radiative fluxes can be computed accurately. This is not the case
with RMC, however. With RMC, we can query the residual before we begin
a sweep and place particles based upon the relative strength of the residual.
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When the residual is zero in a given region, we need not birth any particles in
that portion of the domain. For example, when a domain begins initially in
equilibrium and a boundary source is supplied at t = 0, we can concentrate
nearly all of the particles to the boundary source and the volumetric source
in the first few cells as the simulation begins to evolve. This can easily be
handled on the fly by pre-computing the residual before each sweep.

In addition, it is important to reiterate that we use continuous energy
deposition (CED) tallies [1, 4, 5, 6, 11]. The use of these CED tallies is criti-
cal in the implementation of hybrid HO-LO methods. One known deficiency
of the combination of track-length tallies and surface crossing tallies is that
they do not satisfy the balance equation, Equation 7, for a finite number
of particles. CED and surface crossing tallies, however, satisfy the balance
equation to round-off error for any number of particles per simulation. The
HO-LO method is derived from the consistency of the discrete balance equa-
tion. Thus, the CED tallies are a natural choice.

5. 1-D RMC Results

In order to objectively analyze and compare the RMC algorithm, we will
define a Figure of Merit (FoM) which acts as a measure of the efficiency of
each algorithm:

FoM =
1

‖Error‖2 × (PPTS)
(40)

in which PPTS refers to the average number of particles per transport sweep.
This FoM leads to a sensible measure of efficiency – if the error decreases
by some factor for the same number of particles, the FoM increases by that
factor.

When we refer to the “error”, we refer to the absolute error computed in
the radiation temperature. When errors are plotted in Figures 5 to 14, the
reader should be conscious that the scales on the y-axis area always different
for SMC and RMC. In many cases, the scales on the y-axis differ by several
orders of magnitude. While this makes head to head comparisons slightly
more difficult, it allows the reader to consider the spatial structure of the
errors for both SMC and RMC.

In our implementation of the RMC algorithm, each cell face with nonzero
residual is guaranteed to have at least one particle born on that face. Particles
are distributed based upon the relative strength of the residual source term
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on a given face. For this reason, when we request a given number of particles
per transport sweep, this number is used as a minimum number of particles
to distribute. In many cases, we see that the actual number of particles are
a factor of 1 to 4 times more than the requested number of particles. Note
that the FoM is evaluated with the actual number of Monte Carlo particles
used.

5.1. 1-D Gray Marshak Wave Test Results

This problem consists of a single material throughout a 2.0 cm domain.
The temperature and intensity are initially in equilibrium at 0.025 eV. At
t = 0 a 150 eV isotropic source is applied to the left boundary. The opacity
for this problem is temperature dependent and given by

σ(T ) =
106ρ

T 3
.

For this problem, ρ = 1.0 g/cm3 and cv = 1.3784× 1011 erg/eV − g. We ran
each simulation to a final time t = 5× 10−8 s.

We are interested in observing the sensitivity of the RMC algorithm to
the number of particles per transport sweep, time step size, number of spatial
cells and number of angular bins. For this reason, we will perform a study
in which the timestep size is varied between 10−12 s to 10−10 s, while holding
the number of cells and angular bins constant. We’ll perform a similar study
in which the number of angular bins is varied between 16 and 128 and a third
study in which we consider two different spatial meshes.

5.1.1. Sensitivity to Timestep Size

In this section we will solve the Marshak wave problem using timestep
sizes ∆t = 10−12 s, 10−11 s and 10−10 s. We fix the number of spatial cells
equal to 20 and use 64 angular bins. The error is computed using a high-
accuracy step-characteristics solution on the same spatial-mesh using the
same time-step size. We compute the FoM for both SMC and RMC where
the FoMs have been normalized so that the FoM for SMC using 500 particles
is 1. The FoMs are displayed in Table 1.

In Figures 5 and 6 we plot the error for SMC and RMC at timestep sizes
of 10−12 s and 10−10 s. At ∆t = 10−12 s, RMC is far more efficient than SMC.
From Figure 5, we can see that the only considerable error in the solution
comes not from the stochasticity, but instead from the angular discretization.
We’ll explore this further in the next section. It is also clear from Figure 5
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Table 1: FoM for Timestep Study (64 Angular Bins)

Method Particles ∆t = 10−12 ∆t = 10−11 ∆t = 10−10

SMC 500 1 1 1
RMC 500 331.8 68.2 50.3
SMC 5000 1.57 0.562 0.463
RMC 5000 92.2 16.8 15.5
SMC 50000 0.350 0.126 0.184
RMC 50000 11.1 2.02 3.39

that using 500 particles will suffice with RMC to eliminate the random error.
Hence we can see the degradation of the FoM as the number of particles are
increased.
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Figure 5: Comparison of SMC and RMC at time-steps of ∆t = 10−12 s. Note the different
y-axis scales.

5.1.2. Sensitivity to Number of Angular Bins

In this section we solve the Marshak wave problem using 16, 64 and
128 angular bins. We fix the number of spatial cells equal to 20 and use
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Figure 6: Comparison of SMC and RMC at time-steps of ∆t = 10−10 s. Note the different
y-axis scales.

timesteps of 10−11 seconds. The reference solution is computed using a high-
accuracy step-characteristics solution using 20 spatial cells ad timesteps of
10−11 seconds. Again, we normalize such that the FoM for SMC using 500
particles is 1. The FoMs are displayed in Table 2. The first number is a
FoM with respect to SMC using the comparable number of angular bins.
The second number in parenthesis is a FoM with respect to SMC using 16
angular bins and 500 particles.

As one can see from the table, the FoM increases for RMC as the number
of angular bins is increased. The reason for this should be clear – by ap-
proximating the angular intensity over a finite number of bins, some angular
discretization error is incurred. As the number of angular bins is increased,
this discretization error becomes smaller, allowing the RMC solution to ap-
proach the benchmark solution. The important thing to note is that when
one compares the solution using 16 angular bins with both SMC and RMC,
the RMC solution is far less noisy. The FoM is only 6.93 because the domi-
nant error is due to the angular discretization. This can be seen in Figures
7 and 8.
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Table 2: FoM for Angular Bin Study

Method Particles 16 Bins 64 Bins 128 Bins
SMC 500 1 (1) 1 (9.012) 1 (3.826)
RMC 500 6.93 (6.93) 68.2 (614.6) 272.9 (1044.1)
SMC 5000 0.384 (0.384) 0.562 (5.065) 0.777 (2.973)
RMC 5000 1.075 (1.075) 16.8 (151.4) 109.3 (418.2)
SMC 50000 0.0846 (0.0846) 0.126 (1.136) 0.307 (1.175)
RMC 50000 0.112 (0.122) 2.02 (18.205) 15.1 (57.8)
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Figure 7: Using 16 angular bins there is a considerable amount of angular discretization
error. This can be recognized by the error at the radiation front at x = 1.4 cm. Note the
different y-axis scales.

These figures also help to demonstrate that the RMC is already “con-
verged in terms of particles” by the time 500 particles are used. It is clear
that the stochastic (Monte Carlo) error is smaller than the discretzation er-
ror. This is not the case for SMC – as the number of particles per timestep
is increased, the error continues to decrease. We can see that RMC with 500
particles contains less error than SMC using 50000 particles. In this sense,
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Figure 8: Using 128 angular bins we encounter much smaller angular discretization error.
This error is still visible at the radiation front, however it is much smaller than when 16
angles are used. Note the different y-axis scales.

the FoM is misleading. RMC with 500 particles should really be directly
compared to SMC with 50000 particles. This results in an “effective FoM”
of nearly 900.

5.1.3. Sensitivity to Spatial Mesh Width

In this section we solve the Marshak wave problem using 20 and 100
spatial cells. We fix the number of angular bins equal to 64 and use timesteps
of 10−11 seconds. Again, recall that the reference solutions are computed
using a high-accuracy step-characteristics simulation using either 20 or 100
angular bins and timesteps of 10−11 seconds. As before, we normalize such
that the FoM for SMC using 500 particles is 1. The FoMs are displayed in
Table 3.

In Figures 9 and 10 we plot the errors for SMC and RMC for two different
meshes. On both meshes, SMC is noisier than RMC. When ∆x = 0.02, in
Figure 10, we see that using RMC with 50000 particles produces noticeably
less noisy results than with 500 particles, but the error is still completely
dominated by the angular discretization error. As was seen in Sections 5.1.2
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Table 3: FoM for Spatial Mesh Study

Method Particles Nx = 20 Nx = 100
SMC 500 1 1
RMC 500 68.2 35.5
SMC 5000 0.562 1.267
RMC 5000 16.8 16.6
SMC 50000 0.126 0.188
RMC 50000 2.02 2.54

and 5.1.3, the RMC algorithm produces much higher quality results at a
fraction of the number of particles per timestep required by SMC.
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Figure 9: Comparison of SMC and RMC at ∆x = 0.1. Note the different y-axis scales.

5.2. 1-D Gray Two-Material Problem

This problem represents a multi-material domain in which there exists a
sharp material interface. Half way through the domain there is a transition
from an optically thin material to an optically thick material. We consider a

21



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x−position

E
r
r
o
r

Standard Monte Carlo

∆ x = 0.02

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

x−position

E
r
r
o
r

Residual Monte Carlo

∆ x = 0.02

 

 

500 Particles

5000 Particles

50000 Particles

500 Particles
5000 Particles
50000 Particles

Figure 10: Comparison of SMC and RMC at ∆x = 0.02. Note the different y-axis scales.

1.0 cm domain which is initially in equilibrium at 50 eV. At t = 0 we apply a
500 eV isotropic incident intensity at the left edge of the domain. The rest of
the material properties are summarized in Table 4. We ran each simulation
to a final time t = 5 sh (1 sh = 10−8s) using a maximum time-step of
∆t = 10−11s.

Table 4: Material Properties for 1-D 2 Material Problem

Material 1 Material 2
x - range < 0.5 cm > 0.5 cm
σ (cm−1) 0.2 2000
ρ (g/cm3) 0.01 10.0

cv (erg/eV-g) 1012 1012

We will vary the number of angular bins, using either 64 or 128, and
apply spatial meshes with 40 or 100 cells. While a more exhaustive study
was performed for the Marshak wave problem, we only seek to demonstrate
here that the same general trends are observed. The FoM for each of these
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problems are presented in Tables 5 and 6.

Table 5: FoM for Two-Material Problem using 40 Spatial Cells

Method Particles 64 Bins 128 Bins
SMC 500 1 1
RMC 500 4917.8 6468.5
SMC 5000 1.734 0.498
RMC 5000 2450.4 4274.5
SMC 50000 0.462 0.313
RMC 50000 435.0 969.3

Table 6: FoM for Two-Material Problem using 100 Spatial Cells

Method Particles 64 Bins 128 Bins
SMC 500 1 1
RMC 500 4583.2 12307.7
SMC 5000 1.189 3.193
RMC 5000 3031.6 9867.6
SMC 50000 0.340 1.262
RMC 50000 680.9 3106.6

In each of these tables we can see that RMC is a significant improvement
over SMC. The FoMs for the Two-Material problem are even higher than
that for the Marshak wave problem. This can be explained because there is
a strong emission source that needs to be simulated even beyond the radiation
front. SMC requires particles to be distributed everywhere throughout the
domain, and the source in every cell is considerably stronger than that of the
Marshak wave. We see the FoM increases for RMC as we use 100 spatial cells
and 128 angular bins. When 100 spatial cells and 128 angular bins are used,
the SMC solution exhibits > 10% errors near the material interface due to
undersampling. These errors can be seen in Figures 11 through 14.

Figure 14 plainly demonstrates how bad the undersampling error can be
for SMC when 500 particles are requested per timestep. These errors are most
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Figure 11: Comparison of SMC and RMC at ∆x = 0.025 with 64 angular bins. Note the
different y-axis scales.

pronounced in the thin region where particles with large weights are free to
stream across many cells. The RMC solution contains very little stochastic
error, even when very few particles are used. Again, the only major errors
in the RMC come from the angular discretization. For the Two Material
problem, RMC can be thousands of times more efficient than SMC.

6. Conclusion

Hybrid moment-based acceleration algorithms which rely on a Monte
Carlo transport sweep require the high-order solver to return globally ac-
curate solutions. Standard Monte Carlo may become too expensive if we
attempt to achieve a high level of accuracy. In this paper, we have presented
a residual Monte Carlo algorithm to replace the standard Monte Carlo simu-
lation. The residual Monte Carlo algorithm requires a careful implementation
to recover an analytic solution, but this extra work is well worth it. We have
demonstrated that we can achieve a high-level of accuracy with the residual
Monte Carlo method using hundreds or thousands times fewer particles than
would be required with standard Monte Carlo. This is because the residual
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Figure 12: Comparison of SMC and RMC at ∆x = 0.025 with 128 angular bins. Note the
different y-axis scales.

Monte Carlo algorithm allows for a more efficient use of particles by concen-
trating them in regions of the domain where the solution is rapidly changing.
Additionally, with the residual Monte Carlo algorithm, the solution accu-
mulates no error within a cell during a time-step when the solution in that
cell is not changing. We demonstrated a clear advantage of the RMC-based
HO-LO method with computational results for two 0-D test problems and
two challenging 1-D test problems.

Moving forward, the next goal will be to adapt this method to use the
time-continuous Monte Carlo method described in [11]. This allows for a
more accurate treatment of the time variable. Following the extension of
RMC to the time-continuous form, we will work to place RMC in the multi-
frequency setting. We expect a straightforward extension to multifrequency
problems, with the main concern being the potentially excessive memory
consumption required to store the angular intensity at each angle, frequency
and point in space at multiple points in time. Finally, we will work to place
the RMC method in a multidimensional setting. At this point in time, the
only major concern moving to the multidimensional setting is the increased
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Figure 13: Comparison of SMC and RMC at ∆x = 0.01 with 64 angular bins. Note the
different y-axis scales.
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Appendix

In this section we provide a more rigorous treatment of the derivation in
Section 4.2. We compute particle weights by integrating the source function
(right-hand-side) of the transport equation over spatial cells and angular
bins. Recall from before that we can break the source term down into two
components,

V = σn+1ac(T n+1)4 − I+ − In

c∆t
− σn+1I+ (41)

B = −µdI
+

dx
. (42)

Integrating V over a space-angle bin is trivial, and the total weight for par-
ticles born for x ∈ [xi− 1

2
, xi+ 1

2
], µ ∈ [µj− 1

2
, µj+ 1

2
] is given by

Wi,j =

[
σn+1
i ac(T n+1

i )4 −
I+i,j − In

c∆t
− σn+1

i I+i,j

]
∆xi∆µj. (43)

Treatment of B requires more care. Since Ii,j is constant, dI
dx

is zero within
a cell and does not exist at cell faces unless Ii,j = Ii+1,j. The angular intensity
can be represented by a Heaviside function at a given cell interface,

I(x, µj) = Ii,j +H(x− xi+ 1
2
) (Ii+1 − Ii) , (44)

for x ∈ (xi− 1
2
, xi+ 3

2
). In the sense of distributions, we have

dI(x, µj)

dx
= δ(x− xi+ 1

2
) (Ii+1 − Ii) , (45)

Integrating µ dI
dx

provides source terms exclusively at cell faces, and the source
term is given by

Wi+ 1
2
,j = µ̄j (Ii+1 − Ii) ∆µj, (46)

where µ̄j is the average µ over the jth angular bin.
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Algorithm 1 Predictor-Corrector (PC) Algorithm

PC Time-Step

Input old time-step solutions, In, En, ~F n, T n, σn, and γn.
Solve Predictor LO System

E∗ − En

∆t
+∇ · ~F ∗ + cσnE∗ = σnac(T ∗)4

~F ∗ − ~F n

c∆t
+
c

3
∇E∗ + σn ~F ∗ = γncE∗

ρcv
T ∗ − T n

∆t
−
(
σncE∗ − σnac(T ∗)4

)
= 0.

Update opacity σn+1 = σ(T ∗).
Execute a single HO solve,

In+1 − In

c∆t
+ Ω̂ · ∇In+1 + σn+1In+1 =

σn+1ac(T ∗)4

4π
. (12)

Compute high-order moments

EHO,n+1 =
1

c

∫
4π

dΩ̂In+1

~FHO,n+1 =

∫
4π

dΩ̂Ω̂In+1.

Compute new consistency term

~FHO,n+1 − ~FHO,n

c∆t
+
c

3
∇EHO,n+1 + σn+1 ~FHO,n+1 = γn+1cEHO,n+1

Solve Corrector Step

En+1 − En

∆t
+∇ · ~F n+1 + cσn+1En+1 = σn+1ac(T n+1)4

~F n+1 − ~F n

c∆t
+
c

3
∇En+1 + σn+1 ~F n+1 = γn+1cEn+1

ρcv
T n+1 − T n

∆t
−
(
σn+1cEn+1 − σn+1ac(T n+1)4

)
= 0.
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